If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+5t-25=0
a = 1; b = 5; c = -25;
Δ = b2-4ac
Δ = 52-4·1·(-25)
Δ = 125
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{125}=\sqrt{25*5}=\sqrt{25}*\sqrt{5}=5\sqrt{5}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5\sqrt{5}}{2*1}=\frac{-5-5\sqrt{5}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5\sqrt{5}}{2*1}=\frac{-5+5\sqrt{5}}{2} $
| 8+4y=−28 | | 1+8z=9 | | 50+7p=20 | | 36+2p=16 | | 18+5q=3 | | -65+6x=-11 | | 14=5x=28 | | 6/x-1+5x/x+1=5 | | 9w-5=49 | | (3/2x-1)(3/2x+1)= | | 7-2g=2-5g | | x^2-16x-384=0 | | x^2-16x-374=0 | | 10x^2-80x-3840=0 | | 3t^2+10t=168 | | 20-(x/4)=12 | | 8x+(400-x)=3534 | | {-0,5;3}÷2x+1=0 | | 4x+3x+(5x+4)=180 | | (4x+2)(x-3)÷2x+1=0 | | x+2+x=315 | | 500*x+1200(920-x)=83800 | | d(d-2)=48 | | (x+2)(x-2)(2x)(x/2)=45 | | 8x+3.5=-7+2.0 | | 2m+10/25=4 | | 25x+6=55 | | 8x+1=2x+62 | | 3+(5-x)=9-2x | | 180=3x+4+89 | | A=20m+.05T | | 7x-26=-70 |